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Dynamic Modeling and Control 
of a Ball-Joint-Like Variable-
Reluctance Spherical Motor 
Examination of existing joint designs for robot wrist applications has indicated that 
a spherical wrist motor offers a major performance advantage in trajectory planning 
and control as compared to the popular three-consecutive-rotational joint wrist. The 
tradeoff, however, is the complexity of the dynamic modeling and control. This paper 
presents the dynamic modeling and the control strategy of a three degree-of-freedom 
(DOFj variable-reluctance (VR) spherical motor which presents some attractive 
possibilities by combining pitch, roll, and yaw motion in a single joint. The spherical 
motor dynamics consist of the rotor dynamics and a torque model. The torque model 
is described as a function of coil excitations and a permeance model in terms of the 
relative position between the rotor and the stator. Both the forward dynamics which 
determine the rotor motion as a result of activating the electromagnetic coils and 
the inverse model which determines the coil excitations required to generate the 
desired torque are derived in this paper. The solution to the forward dynamics of 
the spherical motor is unique, but the inverse model has many solutions and therefore 
an optimization is desired. Experimental results verifying the dynamic model are 
presented. The control of a VR spherical motor consists of two parts; namely, the 
control of the rotor dynamics with the actuating torque as system input, and the 
determination of the optimal electrical inputs for a specified actuating torque. The 
simulation results and implementation issues in determining the optimal control input 
vectors are addressed. It is expected that the resulting analysis will serve as a basis 
for dynamic modeling, motion control development, and design optimization of the 
VR spherical motor. 

1 Introduction 
An increasing need for high performance robotic applications 

has motivated several researchers to direct their investigation 
efforts to new actuator concepts to improve the dexterity of 
robotic wrists. Examination of the existing mechanical joints 
reveals that the ball-joint-like spherical actuator is an attractive 
alternative to the three-consecutive-rotational joint configura
tion. The interest in spherical motors as robot wrists is triggered 
because of their ability to provide roll, yaw, and pitch motion 
in a single joint, and because they are isotropic in kinematics 
and kinetics, and they have relatively simple structures. Also, 
they have no singularity in the middle of workspace except at 
the boundary. The elimination of gears and linkages enables 
both high positioning precision and fast dynamic response to 
be achieved by a properly designed spherical motor. These at
tractive features have potential applications such as high-speed 
plasma and laser cutting where the orientation must be achieved 
rapidly and continuously with isotropic resolution in all direc
tions. 

A spherical induction motor was conceptualized by Vachtsev-
anos et al. (1987) for robotic applications, and a detailed analy
sis was given by Devay and Vachtsevanos (1987). However, 
it is difficult to realize a prototype of its kind because of its 
complexity in mechanical and winding design and manufactur
ing, which requires inlaying all three transversing windings on 
the inner spherical surface of the stator. Laminations are re
quired to prevent movement of unwanted eddy currents. Com
plicated three phase windings must be mounted in recessed 
grooves beside the rolling supports for the rotor in a static 
configuration. These and other considerations have led Lee et 
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al. (1988) to investigate an alternative spherical actuator based 
on the principle of a VR stepper motor that is easier to manufac
ture. Lee and Kwan (1991) developed the theory based on the 
local interaction between the adjacent stator and rotor poles to 
demonstrate the concept feasibility of the spherical stepper mo
tor. To allow a few but evenly spaced stator poles to be used 
for smooth motion control, Lee and Pei (1991) analyzed the 
kinematic relationships between the stator and rotor poles which 
are located at the vertices of regular polyhedrons, and developed 
a method to examine the influences of the design configurations 
on motion feasibility. 

Hollis et al. (1987) have developed a six DOF direct-current 
(DC) "magic wrist" as part of a coarse-fine robotic manipula
tion. An alternative DC spherical motor design with three DOF 
in rotation was demonstrated by Kaneko et al. (1988). This 
motor can spin continuously and has a maximum inclination of 
15 deg. Although the DC spherical motor is characterized by 
its constructional simplicity, the range of inclination and the 
torque constant are rather limited. Foggia et al. (1988) demon
strated an induction type spherical motor of different structure, 
with the range of motion characterized by a cone of 60 deg. 
Since the control strategy of the induction motor has not been 
well developed, no results were given on the ability of the motor 
to realize any arbitrary motions. 

As compared with its DC counterpart, a VR spherical motor 
has a relatively large range of motion, possesses isotropic prop
erties in motion, and is relatively simple and compact in design. 
The tradeoff, however, is that a sophisticated control scheme is 
required. For this reason, we discuss here in detail the dynamic 
model and the control strategy of a VR spherical motor. The 
major contributions of this paper are summarized briefly as 
follows: (1) The paper presents a detailed study of dynamic 
modeling and control strategy of a three DOF VR spherical 
motor. (2) An analytical torque model has been derived using 
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Fig. 1 VR Splierlcal motor prototype 

the energy conservation principle governing the electromagnetic 
interaction of the VR spherical motor. The model describes the 
relationship between the torque generated by the spherical mo
tor and the input currents applied to the coils. The torque model 
is shown to depend on the airgap permeance which is a function 
of the relative position between the adjacent stator poles and 
rotor poles. (3) An experimental method which allows the air-
gap permeance to be determined directly from the spherical 
motor has been developed. The technique has been used to 
derive the airgap permeance function from a VR spherical motor 
prototype using a linear magnetic circuit model. (4) The analyti
cal model has been experimentally validated. The results 
showed reasonably good agreement between the analytical and 
experimental data. 

The remaining paper is organized as follows: Section 2 de
scribes briefly a general structure of a VR spherical motor, 
followed by a derivation of the dynamic model. Section 3 pro
poses the motion control strategy and the real-time implementa
tion issues of the spherical motor. Section 4 describes a specific 

stator' 

Fig. 2 Exploded assemble view of the prototype 

VR spherical motor prototype and the experimental testbed. 
Section 5 presents a technique to determine the permeance func
tion experimentally. Experimental results and discussions of the 
torque model are given in Section 6. Finally, conclusions are 
drawn in Section 7. 

N o m e n c l a t u r e 

Ai, A2, A3 = matrices in the quadratic 
torque model 

5max = maximum flux density 
C,„, Q,,j = position vectors of the (th 

stator pole and 7th rotor 
pole 

D = a closed, connected, and 
bounded region in product 
space of IR*̂  and M, or D C 
R^ X IR 

Eg = input electrical energy 
E,n = magnetic energy stored in 

airgap 
I^, ly, I^ — moments of inertia about X, 

y, and z axes 
J = objective function in opti

mization 
K], K2 = gain matrices of control 

law 
M = inertia matrix 
M = penalty factor 

Mji, Myj = magnetomotive forces 

(mmf's) generated by the 
(th stator pole and the y'th 
rotor pole 

P = general permeance func
tion 

Pij = permeance, the reciprocal 
of R,j 

Q — intermediate variable 
R, R ' = transformation matrices 

R = mean radius of a spherical 
surface separating the pole 
faces of the stator and the ro
tor 

Rr = radius of the rotor 
Rij = reluctance of the airgap be

tween the r'th stator pole and 
the jth rotor pole 

W" = m dimensional real space 
T = torque vector, T = [Ti, Tj, 

Te = mirror image of the torque T 

Ti = torque components in x, y, 
and z directions 

r , , Ty, T^ = computed torque compo
nents mx,y, and z directions 

V = magnetic potential of the 
magnetic conductor layer 
with respect to that at the 
center of the rotor 

Wc = coenergy of the magnetic 
system 

X = state vector 
XYZ = stator-flxed Cartesian coor

dinate frame 
e = trajectory tracking error vec

tor, e = q - q^ 

61, 62, 63 = unit vectors along the 
x,y,z axes of the rotor 
body frame 

C// = unit vector perpendicu
lar to the position vec
tors O,,/ and 0,j 

f = general nonlinear func
tion vector 

m = number of stator poles 
n = number of rotor poles 

Po, PI, . . . , PN = coefficients of perme
ance function series 
expansion 

q = generaUzed orientation 
vector 

q,i = desired generalized 
orientation vector 

t, to = time and initial time 
u = electrical input vector, 

or the ampere-turns of 
the electromagnetic 
coils 

= current 
= control vector 
= initial state 

X = specific trajectory 
xyz = rotor-fixed Cartesian 

coordinate frame 
a, P, y = coefficients of input 

vector superposition 
ijj, 9, 4> = ZYZ Euler angles 

u 
V 

xo = x(ro) 
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2 Dynamic Model 
A prototype VR spherical motor is shown in Fig. 1. The 

corresponding assembly view is given in Fig. 2. The spherical 
motor consists of four subassemblies: the rotor, the stator, the 
bearing system, and the measuring mechanism. The spherical 
rotor and the hollow spherical stator are concentric and are 
supported one on the other by means of gimbals. The poles on 
the stator, called stator poles, are wound by coils, and each 
coil can be energized individually. The ferromagnetic poles are 
strategically distributed on the stator surface. Similarly, the rotor 

In terms of Z-Y-Z Euler angles, q = [i//, Q, ̂ Y, the rotor 
dynamic equation is given as follows: 

M(q)q + h ( q , q ) = T 

where 

— ISgC^ 
ISfC^ 
LCs 

is^ 
IC^ 
0 

0 
0 
/. 

(1) 

h ( q , q ) = 

M(q) = 

+ 0<^Q) - (/ - h){4'SeS,^ + 0C^)(4,Q + 4>) 

poles are distributed on the rotor surface. The rotor poles meet 
at the center of the rotor, and the stator cores are connected by 
the magnetic conductor layer in the stator shell to form a mag
netic circuit with the airgap. In order to maintain geometrical 
symmetry for simplicity in control, the stator poles and the rotor 
poles are of a circular shape. 

The spherical rotor is constrained but allowed to roll on the 
bearing gimbals which are mounted on the inner surface of the 
stator. The spherical surface of the rotor, except that of the 
magnetic poles, is made of non-magnetic but hard material to 
provide a smooth spherical surface for the bearing rollers to 
roll on. 

The measuring system consists of two circular guides that 
are made to rotate by the output shaft attached to the rotor. The 
circular guides are arranged perpendicular to each other such 
that they can be rotated freely about the x- and y-axes of the 
stator coordinate frame and measured by means of encoders. 
The third encoder measures the rotation of the output shaft. The 
kinematic relationships between the measuring system which 
consists of two angular guides and three encoders, have been 
given by Lee and Pel (1991). 

The spherical motor is operated on the principle of variable 
reluctance. In the operation of the VR spherical motor, the stator 
coils are energized individually using the control circuitry. A 
magnetic field is established which creates magnetic energy in 
the airgap. The created energy is a function of the relative 
position of the rotor and the stator. The motion of the VR 
spherical motor is thus generated as the rotor tends to move to 
a position such that the energy stored in the airgap is minimized. 
Thus, the dynamic model of the spherical motor consists of two 
parts; namely, the rotor dynamics, and the torque generation. 

2.1 Rotor Dynamics. As shown in Figs. 1 and 2, the 
structure of the spherical motor has certain symmetric properties 
with respect to Z-Y-Z Euler angles, which will be greatly ex
ploited in solving the optimal control input for a specified torque 
in Section 3.2. Thus, the orientation of the spherical motor is 
specified using the Z-F-Z Euler angles. A body coordinate frame 
of the rotor, xyz, is attached at its center with its z-axis pointing 
along the rotor shaft. An inertial coordinate frame XYZ is fixed 
at the center of the stator such that the X and Y axes lie along 
the two orthogonal bearing pins and with its Z axis pointing 
toward the opening of the stator. 

and where T = [Ti, 72, Ta]^ is the actuating torque vector; / 
= 4 = 4 and 4 are the moments of inertia about the principle 
axes; and 5(. > and C(. > denote the trigonometric sine and cosine 
functions of the angle (• ), respectively. 

2.2 Torque Model. The torque generated by the spherical 
motor is a function of input currents applied to the stator coils 
and rotor orientation for a given structure. In the following 
derivation, the electromagnetic interaction between the rotor 
and the stator poles is modeled as a function of airgap reluctance 
and the electrical inputs. Next, the torque generation is derived 
using the principle of conservation of energy. A compact form 
of the torque model is then presented. Finally, the properties of 
the torque model are discussed. 

2.2.1 Electromagnetic System. In order to obtain some 
knowledge of the initial design as well as to derive an analytical 
model of the spherical motor for motion control, a lumped-
parameter approach analogous to the linear electric circuit is 
used in the electromagnetic modehng. The linearized model 
allows the flux flowing through the reluctance of airgaps to be 
considered separately. The following assumptions are made in 
the derivation of the analytical model: (1) The reluctance of 
the iron core is negligible as compared to that of the airgap and 
thus the energy storage occurs solely in the air gap. The error 
introduced by this assumption depends on the geometrical di
mensions of the structure and the permeability of the material. 
This error, in general, can be significantly reduced with mag
netic materials of high permeability and low excitation levels. 
(2) Leakage flux is assumed to be negligible. This constraint 
is enforced by maintaining a large distance in comparison to 
the airgap between adjacent rotor poles, adjacent stator poles, 
and the bottom of the stator pole tooth to inside stator. 

For the purpose of modeling the VR spherical motor, the 
motor is considered to consist of three major components as 
shown in Fig. 3, namely a set of m interconnecting stator poles, 
a set of n interconnecting rotor poles, and the air gaps formed 
between pairs of overlapped stator and rotor poles. The model 
permits a variety of magnetic field interactions to be investi
gated. In Fig. 3, Msi and M^j denote the magnetomotive forces 
(mmf 's) generated by the i'th stator pole and the j'th rotor pole, 
respectively, Rjj denotes the reluctance of the airgap between 
the j'th stator pole and the jth rotor pole, and ^.j is the corre-

N o m e n c l a t u r e ( c o n t . ) 

ipij = angle between the position vector ^ j , ̂ 2, ̂ 3 = intermediate variables 
of the j'th stator pole and theyth /Uo = permeability of air 
rotor pole 

77, ^ = tilt angles from nominal position 
X = chi squared statistic quantity 
(a = angular velocity of the rotor 

*,j = magnetic flux flowing through Ry 
^rj - magnetic flux flowing through the 

(th stator pole 
*s; = magnetic flux flowing through the 

yth stator pole 
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r 
Fig. 3 Magnetic circuit 

sponding flux flowing through Rij. The magnetic potential of 
the magnetic conductor layer at the stator shell with respect to 
that at the center of the rotor is denoted as V. 

The magnetic flux #y can be determined with the aid of Fig. 
3 as 

%j = Pii[M,i + M,j - V], (2) 

where the permeance Py is the reciprocal of Ry. Since 
m n 

I I $« = 0, (3) 
1=1 7 = 1 

the magnetic potential V can be derived by substituting $y from 
Eq. (2) into Eq. (3) , which leads to 

i=l j = l /=1 J = l 

(4) 

For a specific spherical motor structure, the airgap permeance 
Pij is a function of the angle between the position vectors of 
the jth stator pole and theyth rotor pole, (^,j, namely. 

Pii = PWij)- (5) 

Equation (5) is referred here as a permeance model. 
Both numerical computation (Pei, 1990) and experimental 

results (Lee and Kwan, 1991) have indicated that a typical 
permeance model P{tp) has the following properties: (1) P(y?) 
is even, positive, and monotonically decreasing to zero as the 
displacement increases. (2) The derivative of P(ifi) has a local 
maximum or minimum at ^p = ±y>„, where ip„ is a constant 
for a given geometry. (3) The value of P((p) about the vicinity 
of the origin and at the origin (i.e., when the poles are fully 
overlapped) can be reasonably well-determined by 

P(<P) 
tJ'oSjip) 

(6) 

where Ho is the permeability of air; g is the shortest path length 
between two parallel pole-faces; and S(ip) is the overlapping 
area between the stator pole and the rotor pole. In addition, the 
following condition must be satisfied in modeling the perme
ance function for a spherical motor: Pi(p) must be periodic 
with period Iw. Thus, using Fourier series expansion on [ - TT, TT] 
and retaining the first Â  terms, the following periodic permeance 
function can be obtained. 

Pif) = Po + 'L Pk cos (kip) (7) 

where the coefficients {po, Pu • • •, PN] can be computed from 
experimental data. Note that Pif) is an even function and 
therefore the sine terms vanished. 

2.2.2 Governing Equations of Energy Conversion and 
Torque Generation. The torque generated by the electromag
netic system is governed by the principle of conservation of 
energy, which states that 

E,{t) - E„(t) = T ( 0 • (o(t) (8) 

where E^ is the time rate of magnetic energy stored; E^ is the 
electrical power input; cj is the angular velocity of the rotor. 
The mechanical powers can be rewritten as 

T • w = X Tk4>k (9) 

where the time derivatives of <̂ j. are the angular velocities mea
sured with respect to the rotor body frame. Using the results 
from Eqs. (8) and (9), and noting that the differentials of 
4>k are independent of each other, the torque generated by the 
magnetic system is given by 

V ( £ , - EJ, (10) 

where 

d 
Ci + 62 + 

d4>. 
6 3 

and Ctik = 1, 2, 3) is the unit vector along the x,y, z axes of 
the rotor body frame, respectively. The electrical power input 
to the system and the total magnetic energy stored in the system 
are given by 

i=i j = i 

1 .^ " $?. 

^ 1=1 j = i ^U 

(11) 

(12) 

From Eqs. (11), (12), and (4), the output torque can be ob
tained from Eq. (10) as 

m fi 

T = 5 I I (M,,. + M,,. - y)^VPy, (13) 
; . i j = i 

A detailed derivation ofEqs . ( l l ) , (12) ,and(13)canbefound 
in (Lee, 1992a). 

The permeance P,j is a function of the angle and distance 
between the ith stator pole andyth rotor pole, as shown in Eq. 
(5). The angle, ipij, can be determined from the dot product of 
the position vectors of the ith stator pole andyth rotor poles as 
follows: 

cos (ifij) = c • r 

where R is the radius of a spherical surface separating the pole 
faces of the stator and rotor; and C„ and C^j are the position 
vectors of the stator and rotor poles, respectively. From Eq. 
(13), it can be shown by using differential geometry that the 
torque is given by 

T = ^ I I 
i = l J=l 

(M„. -I- Mrj - V) 2dPW) 
dip 

(14) 

where tg is the unit vector perpendicular to the position vectors 
Cj, and Crj, which can be determined from the following equa
tion: 

R^ sin {ifij) 
(15) 

Thus, Eqs. (4) , (14), (15), and a permeance model define the 
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torque generated by the spherical motor for a given set of inputs 
in terms of the magnetomotive forces of the coils. 

2.23 Torque Model in Quadratic Form. In practice, it is 
preferable that there be no wiring in the moving parts or in 
other words, only simple iron cores with no excitation coils are 
used as rotor poles (i.e., Mrj = 0, 7 = 1, . . . , n) . With this 
assumption, we consider here the case where only current 
sources are used in the stator coils and the mmf's of the coil 
are treated as system input variables. The torque model given 
by Eq. (14) can be written in matrix form as follows: 

T, = i u'^A.u, 1, 2, 3 (16) 

where 

A. = I ( i ^̂ (̂ > 

u = [M,i ...M,,nV^ K'", 

(e,;-e,) )(a - c,)(a - c,)'', 

c, = [0, 0, . . . , 0 , 1,0, . . . , 0 ] ' ' , 
/th 

a = [ai, 02, • • • > Oil • • •, amV^ 
n m n m 

a, = S Piili.lL I P>i) and I a, = 1 
j=\ i=\ ]=\ 1=1 

classical linear control approaches can then be applied to each 
of the coordinates separately. As an example, the control vector 
V may be chosen as 

V = q^ - K i ( q - (jrf) - K2(q - q,,) 

where 

K, = diag [A:,^, iiTie, ATî ] and K2 = diag [/Tj*,/fao,/^a^]-

The tracking error e = q - q̂  is guaranteed to approach to zero 
asymptotically if the elements in Ki and K2 are all positive. 

The inertia matrix M(q ) given in Eq. (1) is not invertible 
at S = 0, which is, in fact, a singular point for the rotor dynamics 
in Z-Y-Z Euler angles. At the singular point, Eq. (18) can not 
be obtained from Eqs. (1) and (17). We shall examine the 
validity of the control law at the singular point. The Euler 
equations are rewritten in state-space representation: 

* = f(x, T ) , (19) 

where f is known as the vector field in differential equation 
theory (Hale, 1980). As # * 0, we have \ = [ip, 0, (f), i/», 0, 
iV, and 

[Ifi(>lfQ + </.) 

"A 
0 

21041Q T,C,^ + T2S^]/IS, 

IfiC^i^Ce + <!.)]/(/« -I- ( r , Q - T2S^}Q/(ISs) + T,/l, 

(20) 

and where the matrix Ai varies with the orientation of the rotor. 
The torque model of a current-controlled spherical VR motor 

given by Eq. (16) is algebraic and quadratic with respect to u 
or the ampere-turns of the electromagnetic coils. The torque 
model yields a unique torque vector for a specified set of coil 
excitations. However, there are generally infinite sets of coil 
excitations to produce three desired torque components. 

3 Motion Control Strategy 
The motion control of the VR spherical motor consists of 

two parts. The first part is to determine the actuating torque of 
the VR spherical motor so that the motor follows a desired 
trajectory. The second part determines the optimal electrical 
inputs to generate the required actuating torque determined from 
the first part by using the control law for tracking the desired 
trajectory. 

3.1 Control of Rotor Dynamics. The control task here 
is to determine the actuating torque so that q would track the 
desired trajectory q^. The spherical motor is controlled by using 
the computed torque method (Spong and Vidysagar, 1989), 
where the control law is chosen in the form 

T = M(q)v + h ( q , q ) (17) 

and where v = [i;^, Ua, v^]'^ is the control vector. Using the 
control law defined in Eq. (17), the closed-loop dynamic equa
tion becomes Mij = Mv. Since | M | =̂  0 for V^ =!t 0, therefore, 
we have 

q = V. (18) 

Equation (18) represents a linear system with three decoupled 
second-order subsystems under the control vector v, and hence 

As ^ = 0, Eq. (1) becomes 

(21) 

In state-space representation, as ^ = 0, we have x = [6, 1// + 
(f), 0, ijj, + (/)]''and 

f(x, T ) = 
ij, + <l> 

TJL 

(22) 

If the actuating torque T is determined by Eq. (17), then the 
right-hand side of Eq. (19) is continuous on D C IR** X R, a 
closed, connected, and bounded region. Furthermore, it also 
satisfies a local Lipschitz condition on D. Then for any (xo, to) 
e D, where XQ = x(?o), ?o is the initial time, there exists a 
unique solution x ( ' , Xo, to) defined over some interval a <i to 
< b with (Xo, [a, b]) C D. Moreover, the solution depends 
continuously on to and XQ. This argument is based on the Pi-
card's Existence and Uniqueness Theorem (Hale, 1980). 

The mapping field f in Eq. (19) is not continuous at 0 = 0 
and hence, local Lipschitz condition is not satisfied. In fact, the 
rotor motion can essentially be described by two independent 
variables 9 and I/J + </» at ^ = 0 where the precession and the 
spin axes are aligned and measured about the same axis. The 
vector field f degenerates from IR* in Eq. (20) to H" in Eq. 
(22). Thus, many solutions exist around the singular point of 
the Z-Y-Z Euler angles, as there are two independent equations 
with three Euler angles. 

By the physical nature of the ball-joint-like spherical motor, 
the solution to Eq. (1) should be continuous. To ensure a smooth 
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Fig. 4 Simulation results of computed torque method 

motion at ^ = 0, a generalized vector field must be constructed 
at ^ = 0 such that the vector field of the closed-loop system is 
continuous for the rotor dynamics given by Eqs. (20) and (22). 
Since the possession and spin angles at ^ = 0 can be arbitrarily 
chosen provided that their sum is uniquely determined by the 
location of the body, the vector field v in Eq. (18) can be treated 
as a generalized vector field for the control law defined by Eq. 
(17). With Eq. (22) replaced by Eq. (18) at 6 = 0, the vector 
field is continuous over the whole range of motion and satisfies 
Lipschitz conditions and hence, the unique solution is ensured. 
Typical simulation results for a rotor of 75 mm diameter with 
design / = 8.0538J5-4 Kg-m' and /, = 5.3775£-4 Kg-m' are 
shown in Fig. 4. 

3.2 Control Input Optimization. The control input opti
mization is essentially an inverse problem to the torque model. 
The solution to the inverse problem is to compute a set of coil 
excitations, which is denoted here as a control input vector u, 
that is required to generate the desired torque T. Given the 
desired torque, u may be determined from Eq. (16) by solving 
the algebraic equations. However, since u G R" where m is the 
number of stator coils, a sufficiently larger integer as compared 
to the degrees of freedom of the spherical motor, there are 
generally an infinite number of solutions to the inverse problem. 

3.2.1 Optimization Algorithm. The generalized reduced 
gradient (GRG) method (Wolfe, 1967 and Abadie, 1969) is 
used to solve for the optimal input vector u, which would mini
mize the following functional: 

•/(u) = I 
1 

\Ui\ + M X - uXu - T, (23) 

where Af > 0 is a very large real number. The first term in the 
functional is to minimize the current amplitude or the consumed 
electrical power, and the second term is an addition of a penalty 
term taking into account the system constraints represented by 
Eq. (16). Typical values of p are 1 and 2. When p is chosen 
as 1, the sum of the current amplitudes is minimized. If the 
consumed electrical power of the spherical motor is to be mini
mized, p is set to 2. 

It has been shown that the torque model is nonlinear, and 
the inverse problem is characterized by its multiple solutions. 
Although it has been numerically found that the GRG method 
works well in minimizing the functional represented by Eq. 
(23), the average time to compute an optimal input vector 
using off-the-shelf GRG optimization software is in the order 
of minutes on an Intel 80386 33 MHz personal computer. For 
real-time control applications where the computation time is in 
the order of milliseconds, a practical technique for computing 
a smooth solution to the inverse problem is necessary. The 
implementation technique introduced here consists of a practical 

look-up table which can be precompiled off-line, and a real
time interpolation algorithm. The objective is to determine the 
minimum set of control vectors off-line, then store them in a 
look-up table for on-line use. 

3.2.2 Practical Look-Up Table of the Inverse Torque 
Model. The look-up table should allow an optimal input vector 
to be determined for a required torque at any given rotor orienta
tion. If each of the six parameters (three torque components 
and three Euler angles) is characterized by L points over its 
operating range and two bytes are used to represent each of the 
m control inputs and the six parameters, the memory size re
quired by the look-up table will be 2 mL' . For a system with 
11 independently controlled inputs, the required memory size 
is over 1300 MBytes even if only 20 points are used to charac
terize each of the parameters. Two approaches, parameter elimi
nation and the use of symmetry, are discussed in the following 
to reduce the table size required for practical implementation. 

Table Size Reduction by Parameter Elimination. This 
approach is to eliminate the three torque parameters by introduc
ing three control input vectors Ui, U2, and U3 such that these 
control vectors would generate the unit torques about the three 
independent rotor axes, respectively. For a specified torque at 
any arbitrary direction, the input vector u is then computed 
fromEq. (24). 

u = aUi -I- /?U2 -I- 7U3 (24) 

where a, P, and y are coefficients to be determined for a speci
fied torque. By substituting Eq. (24) into Eq. (16), we have 

\[a,l3,y]^Xa,p,yY=T, (25) 

where 

ufA.Ui u[AiU2 u[A,u3 
ujAjU] U2A1U2 U2A,U3 
u^AjUi \xlA.,\X2 Uŝ AjUs 

and t = 1, 2, 3. The coefficients a, /3, y are solved from Eq. 
(25), and thus the required control input vector u can be ob
tained by superposition using Eq. (24). By storing the three 
input vectors Ui, U2, and Uj for a given orientation in the pre
compiled table, the torque variables are eliminated and the 
memory size required in the look-up table is reduced to 6 mL' 
bytes. 

Table Size Reduction By Use of Symmetry. Since the 
torque parameters are eliminated from the table, the control 
inputs are tabulated in terms of the rotor orientation only. The 
operating Z-Y-Z Euler angles are 0 •& ij/ s ITT, - Tr/4 ^ 0 ̂  
7r/4, and 0 ^ cf) r^ 2ir, where ijj, 9, and (p are the precession, 
nutation, and spin angles respectively. If the resolution of the 
parameters is r points/radian, the memory size of 12 m (TTT)' 
bytes would be required. Further reduction of the look-up table 
can be achieved by using the symmetry of the pole locations 
to reduce the range of orientation parameters. A scheme was 
devised to illustrate the principle using a particular configuration 
where the stator and the rotor poles are arranged at the vertices 
of an icosahedron and an octahedron respectively. It is expected 
that similar arguments can be readily extended to other configu
rations where poles are arranged in the pattern of regular poly
gons. The following examples illustrate the basic principle. 

Symmetry of Rotor Poles. Consider the spherical rotor 
which has five evenly spaced poles arranged at the apices of 
an octahedron. The topmost pole (#6) is eliminated to provide 
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Fig. 5 Rotor pole configuration 

an area for attaching the output shaft. As shown in Fig. 5, since 
the four rotor poles, j = 1, 2, 3, 4, are evenly spaced at n/l 
radians apart at a plane perpendicular to the axis of the fifth 
pole (indicated as b in Fig. 5) , an input vector u(</>) would 
generate the same torque about the z-axis of the rotor as would 
be generated by u((^ ± 7r/2) for any particular (ip, 9). In other 
words, u((/) ± 7r/2) = u(</))fora specified torque to spin the 
rotor about its z-axis. Thus, the range of the spin angle required 
in the formation of the look-up table is 0 < î  s ixll. 

Symmetry of Stator Poles. Consider eleven stator poles lo
cated at the apices of an icosahedron as shown in Fig. 6, The 
topmost pole (#12) is eliminated to allow the rotor shaft to 
extend through. Ten other poles are evenly spaced at 27r/5 
radians apart in two circular planes perpendicular to the axis of 
the eleventh pole. Figure 7 shows the line projections of the 
stator pole axes on the x-y plane. The space bounded between 
two adjacent projections is denoted as 5^ (fc = 1 , 2 , . . . , 10) 
in Fig. 7, where b is the projection of the endpoint of the fifth 
rotor pole on the x-y plane. 

Define the notation u"* to be an input vector u required to 
generate T when b G S^. The range of the precession angle 
required in the table formulation is such that b G Si. When b 
is outside the region Si, the input vector u**' to generate the 
desired torque T can be deduced from the tabulated input vector 
«*" for the same torque by means of a transformation: 

,(*) _ 
R, O 0 
O Rj 0 
0^ O'̂  1 

, ( 1 ) (26) 

where the transformation Rj: is a 5 X 5 matrix, O is a 5 X 5 
zero matrix, 0 is a 5 X 1 zero vector. The determination of the 
transformation Rj is separated into two cases, namely, an odd 
and an even number of k. 

10 

5 

y S8 ""'-•-

C \ S9 -''/ 

S6 I S5 

510 

K>., 

S4 \.:Y 
- ' ' ' \ ** 

• ^ S 3 A' 

S2 ! ^ 2 

Fig. 7 Projection of stator poles on x-y planer 

k is odd. Let (ij/, 6) denote the position of b when b E Si. 
For any positions of fc e 5* defined by [i/f -I- (2irl5)k, 6], the 
input vector u**' to generate the desired torque T can be deduced 
from «*" for the same torque by using Eq. (26), where the 
transformation R^ is given by 

~o 0 0 0 r 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 

, 0 0 0 1 0 . 

jj^ ^ jj(t-i)/2^ and R 

k is even. Similarly, the input vector M**' required to gener
ate the desired torque T when b G St can be deduced from u''* 
for a mirror image of torque T by means of Eq. (26), where 

R. R*''R', and R' 

1 0 0 0 0 
0 0 0 0 1 
0 0 0 1 0 
0 0 1 0 0 

, 0 1 0 0 0 . 

Fig. 6 Schematic of stator pole locations 

The mirror image of the required torque T denoted as T^ (when 
b € Si) is given by 

• " - 1 0 0 
0 1 0 
0 0 - 1 

By use of the symmetry, the ranges of the Eulerian angles 
required in the formation of the table are reduced to: precession: 
0 < !/( :s 7r/5, nutation: 0 < ^ < 7r/4, and spin: 0 < <̂  s TT/ 
2. For the icosahedron/octahedron configuration, the required 
memory size is 3m(r7r)'/20 bytes, which represents ^ of the 
original range. 

It is worth noting that for a particular motor design, the table 
size is only a function of parameter r (points/radian). Further 
reduction of the table can be achieved by setting a relatively 
large step of r through a real-time estimation algorithm (Lee et 
al, 1993). 

4 Laboratory Prototype and Experimental Testbed 
In order to determine the permeance function, to examine the 

validity of the analytically derived quadratic torque model, and 
to validate the optimal solution to the inverse torque model, a 
laboratory prototype has been developed. Several experiments 
have been performed on the prototype VR spherical motor. 
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Fig. 8 Experimental setup 

The prototype used here is based on a design configuration 
where the stator and the rotor poles are arranged at the vertices 
of an icosahedron and an octahedron respectively. The stator 
of the prototype VR spherical motor is constructed of iron. The 
stator poles are arranged on the inside of the stator surface 
following the pattern of a regular icosahedron. The topmost 
stator pole has been ehminated allowing the motor's output 
shaft to extend out. The stator poles are installed externally 
allowing for easy adjustment of the air gap with close-toleranced 
shim stock. A coil is wound on each stator pole using 26 AWG 
around copper wire with a heavy layer of Imideze insulation. 

The rotor is a round and smooth sphere with iron poles lo
cated at the vertices of a regular octahedron. The topmost rotor 
pole was eliminated to provide an area for attaching the output 
shaft. The rotor's output shaft can spin continuously and has a 
maximum inclination of 45 degrees, which is Umited by the 
opening of the stator and the output shaft diameter. The rotor 
poles connect at the rotor core providing a complete magnetic 
flux path. The rotor diameter has been designed to fit through 
the stator opening allowing for a one piece stator design. Ten 
transfer bearings, which are threaded externally to the stator, 
provide redundant support of the rotor while allowing the de
sired three rotational degrees of freedom. A transfer bearing 
utilizes a nylon ball and Stainless Steel 300 outer shell both 
having a low magnetic permeability. Since the airgap permeance 
function is to be derived from torque measurements, friction 
would have an adverse affect on the results. In the prototype, 
the majority of the friction is due to loading of the transfer 
bearings used to support the rotor. Friction was minimized in 
the experimental setup by: (1) use of oversized transfer bearings 
thereby minimizing contact (Hertzian) stresses, (2) small pre
loading of transfer bearings, and (3) bearing loading due to 
forces generated by the attraction of adjacent rotor and stator 
poles minimized due to experiment's symrtietry. For clarity, the 
assembly process of the laboratory prototype has been docu
mented separately in the form of a video tape (Lee, 1992b). 

The locations of the five rotor poles and the eleven stator 
poles are given in (Roth, 1993). The characteristic dimensions 
of the VR spherical motor used in the experiments are summa
rized as follows: The mean radius of the spherical surface sepa
rating the stator and the rotor pole faces is 38.1 mm. The radii 
of the stator and the rotor poles are 12.7 mm and 19.05 mm 
respectively. The airgap separating the stator and the rotor pole 
faces is adjusted to 0.75 mm. Both the stator and rotor poles 
were made of 1018 carbon steel which has a maximum flux 
density of S âx = 2.1 Wb/m^ 

An experimental testbed was developed consisting of the VR 
spherical motor prototype, current amplifiers, force/torque (F/ 
T) sensor, and an IBM-compatible 80386 PC. This experimen
tal setup was constructed to serve as a platform for verifying the 
torque prediction model and for developing and implementing 
feedback control algorithms. The experimental setup is photo
graphed and is shown in Fig. 8. Two DDA-06 expansion Ijoards 
have been installed in the PC, each of which provides six 12-
bit D/A outputs and 24 lines of digital input/output. Eleven of 
the D/A outputs were connected to eleven high-speed, low 
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output impedance current amplifiers. Each amplifier was con
nected to one stator coil. The amplifiers used are Aerotech 
DS8020 PWM amplifiers. Each amplifier provides a maximum 
current of 3.25 Amperes. The F/T sensor, manufactured by ATI 
Corporation, measures the forces and torques. This experimental 
setup allows the motor's output torque to be measured at all 
positions in the workspace for purposes of verifying the torque 
model. 

5 Determination of Permeance Function 
As shown in Eq. (16), the torque model depends on the 

permeance function and its derivative of the electromagnetic 
system. A method to determine the airgap permeance of the 
spherical motor experimentally is presented in this section. With 
this method, the static torque output of the spherical motor is 
measured at a series of positions as a function of current input. 
Using the analytical torque model, the data is reduced to the 
airgap permeance. 

5.1 Experiment Setup. An F/T sensor is used to deter
mine the motor's output torques by measuring the forces and 
torques about the three Cartesian axes at the F/T sensor's center. 
Analysis showed that the torque measurement and computation 
in z-direction have the minimum uncertainty (Roth, 1993). 
Therefore, the method for deriving the experimental permeance 
function used only T^ measurements. For the permeance func
tion experimental setup, the spherical motor prototype was as
sembled with only two stator poles, Nos. 1 and 6. The coils 
were connected such that the magnetic flux flows along a closed 
path, from one stator pole and returns to the other through the 
rotor poles, as shown in Fig. 9. The rotor is tilted at angle 77 = 
^ from the nominal position, At this initial position, rotor pole 
No. 1 is in perfect alignment with stator pole No. 1, while 
rotor pole No. 3 is in perfect alignment with stator pole No. 6. 
Rotor poles No. 2 and No. 4 are 90 degrees from stator poles 
Nos. 1 and 6. This experimental setup will result in motor output 
torque about the z-axis only with the lowest uncertainty. The 
resulting torque measurements are used to determine the experi
mental airgap permeance. 

A series of measurements are made with the input variables 
being the rotor's rotation about the z-axis and the stator pole's 
mmf input. The displacement variable is measured by using the 
prototype's 9^ encoder. The mmf input is controlled using cur
rent amplifiers. The output variable is the motor's output torque 
which will only be about the z-axis due to the use of stator 
poles Nos. 1 and 6. The motor's output torque is measured by 
connecting the output shaft of the rotor to the F/T sensor. 
Bearing loads due to the attractive forces generated between 
adjacent poles will be theoretically zero due to the symmetry 
of this experiment at all positions for equal mmf excitation. To 

F/T Sensor 

Fig. 9 Schematic of the experimental setup 
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Fig. 10 Equivalent magnetic circuit representation 

ensure a complete magnetic circuit, the input currents to stator 
poles No. 1 and No. 6 were of equal but opposite polarity. 

An equivalent electrical analogy is illustrated in Fig. 10. The 
relative displacement between the ith stator pole and they'th 
rotor pole is designated by ipy. To simplify the number of circuit 
branches, the constraint 0 < (/Jn ^ 7r/2 has been enforced and 
P(ip > 7r/2) = 0 assumed. By rotating the rotor about the 
output shaft, the system has only one degree of freedom. For a 
given displacement between rotor pole No. 1 and stator pole 
No. l,<pu, the remaining pole displacements can be determined 
as 

V̂ea = V'li + <5, <Pu = ¥'11 + <5, and (̂ 53 = Vn- (27) 

The constant, 5, is defined as the difference between the angular 
spacing between adjacent stator poles, p^, and the angular dis
tance between adjacent rotor poles, Pr- For this experimental 
setup, Ps = TT radians andp^ = 7r/2 radians leading to a simpli
fied torque expression. 

By utilizing the equivalent electrical circuit shown in Fig. 
10, three mesh equations may be written using Kirchoff 's Volt
age Law, 

1 1 
-I- — 

J_ 
> u 

0 

1 

J_ J. 
Pu ^ P, 62 

P62 

0 

_ J_ 

J_ J_ 
^ 6 2 ^ 6 3 

c. 
C2 
C3 

_ 
0 

Ml — Me 

0 

The three unknowns C,, (i = 1, 2, 3) are determined by solving 
the above matrix equation using Eq. (27). The results are ob
tained as follows: 

C : = | / ' ( ^ - f 5 ) , 

C2 = I [/'(¥') + 'P(V + «)]- and 3̂ = f/'(¥') (28) 

where Q = Ui - u^ and tp = (pu- The coenergy of the motor 
is found by summing all the energy in the four airgaps since 
iron losses have been neglected, 

1^? 
^ - 2 . . 2 Pu 2 P62 

C3)' , 1 Q 
2 Pa 

(29) 

Substituting the results from Eqs. (27) and (28) into Eq. (29), 
the coenergy of the system simplifies, 

W, = \Q\P{^) + P{^ + 6)]. 

The motor output torque is found by differentiating the coenergy 
with respect to the displacement variable, (p. The resulting 
torque expression, given in Eq. (30), is in terms of the total 
mmf input, the first derivative of the permeance function, and 
the difference in pole spacing. 

4 
dP{^p) dPi^p + 5) 

dtp dip 
(30) 

A modified form of Eq. (30) is used to solve for the airgap 
permeance function. 

y, 
4 r ( y , ) _ dP(ip) 

e ' dip 

dPjip + 6) 

dip 
(31) 

The left-hand side of Eq. (31), Y,, represents the known rela
tionship between the measured torque and input magnetomotive 
force at the ipi position. The right-hand side of Eq. (31) repre
sents the unknown model of the airgap permeance derivative 
function. Since it is not possible to solve in close form for the 
airgap permeance function from Eq. (31), we instead solve for 
the permeance function coefficients numerically. The airgap 
permeance function is expressed in series form using only even 
basis functions satisfying part of permeance property criteria. 

P(vi) = Po + "L pjfV (32) 
y = i 

The right-hand side of Eq. (31) is expanded by substituting the 
derivative of Eq. (32). The result is Eq. (33) which predicts 
the unknown relation between independent and dependent vari
ables as 

y('P^,Pj) = I 2jpjipV-' + I 2jpjiip^ + 6) 2J'l (33) 
j = i j = i 

A Gaussian distribution model is used to represent the errors 
associated with the experimental torque measurements. The 
maximum likelihood estimate (MLE) of the A' unknown coeffi
cients, {pi, P2, pi, •. ., PN] As found by minimizing the quan
tity, x^, over the M' measured data points (N < M') with 
individual uncertainties, cr,, 

X^ = I 
j= i 

Yi - yWi\Pu •••,PN) (34) 

The remaining unknown coefficient, po, is determined by com
puting the permeance between two perfectly overlapping spheri
cal areas using Eq. (6). The overlapping area is determined by 
Eq. (35) which integrates the partial surface area of a sphere, 

S{ip = 0 ) = 2 7 r / ? r ( l - c o s <^mi„) (35) 

where î min in degrees is the minimum size of the two poles and 
Rr is the radius of the rotor {Rr >> g). For the prototype, ip^ 
= 28 degrees and tps = 16 degrees, therefore, ip^ir, = min (ip,, 
tps] = 16 degrees. 

The unknown coefficients were determined by utiUzing the 
generalized reduced gradient (GRG) solver which minimizes a 
general nonlinear objective function with nonlinear constraints. 
In this example, the GRG solver minimized the objective func
tion given in Eq. (34) with the constraints given by the restric
tions on the airgap permeance function, P(ipi) a P((/7,+ |), 
PiiPi) > 0, and P(ipi) = P(-iPi), where ( = 1, 2, . . . , M' -
1. The third restriction requiring an even permeance function 
was satisfied by using only even basis functions for the series 
expansion as used in Eq. (32). 
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5.2 Experimental Results. The experimental data taken 
from the prototype is shown in Fig. 11. The relative displace
ment between stator pole No. 1 and rotor pole No. 1, tpu, 
was varied from 0 to 90 degrees in approximately one degree 
increments. The spherical motor's output torque was measured 
at each position for currents varying from 0.25 amps to 3.11 
amps. To distinguish airgap permeance from iron permeance, 
it was necessary to determine at which measurement level iron 
losses in the prototype become significant. For the experimental 
setup and assuming no iron losses, the output torque is propor
tional to current squared. An expression for the torque constant 
as a function of relative displacement, A'((^), is derived for the 
experimental setup as a ratio of the torque about z-axis to the 
square of the input current 

K{^) = r(^)/M^ (36) 

The computed torque constant is shown in Fig. 12 by 
applying Eq. (36) to the experimental torque measurements. 
The graphs for torque constant are approximately constant for 
the excitation levels of 0.505 amp and 0.76 amp. Current levels 
greater than 0.76 amp show a decreasing torque constant illus
trating that iron losses are becoming significant. The 0.76 amp 
data was used to derive the airgap permeance function since it 
has a smaller measurement uncertainty than the 0.505 amp data. 

The derived permeance coefficients are given in Table 1. 
The results for the experimental airgap permeance function and 
theoretical overlapping area permeance are given in Fig. 13. 
The two airgap permeance functions show good correlation for 
small pole separations. This result is expected as fringing flux, 
which is neglected in the overlapping area model, is minimal 

Table 1 Airgap permeance coefficients (even bases func
tion expansions) 

Pa = 
Pi = 
P4 = 
P6 = 

6.155327E-07 
-3.729770E-06 
-3.927777E-06 

8.438715E-08 

p, = 6.536474E-08 
/)3 = 6.147109E-06 
p, = 7.780053E-07 
/), = 5.366798E-08 

for small displacements. The experimental results diverges from 
the overlapping area model for larger displacements since fring
ing flux becomes significant. The overlapping area permeance 
model is shown to give a conservative estimate of the actual 
airgap permeance and therefore is useful for magnetic optimiza
tion. 

Figure 14 illustrates the experimentally derived airgap perme
ance model results. The model fits the experimental torque mea
surements accurately for the current values of 0.505 and 0.76 
amps. This result is expected, as the torque constant graph 
shown in Fig. 12 indicated that iron losses were minimal for 
these currents. The model begins to deviate from the experimen
tal torque measurements for current values of 1.03 amps and 
greater. At this point, the reluctance of iron within the prototype 
has become significant and is now of the same order of magni
tude as the airgap reluctance. The model's overprediction of 
the motor's output torque becomes more pronounced as the 
current increase in magnitude. Neglecting the iron reluctance 
leads to an overprediction of the motor's output torque. Iron 
saturation was verified by computing the flux density in the 
inner diameter of the stator pole which is the smallest cross-
sectional area of the motor's flux path. A flux density of over 
2.0 Tesla was calculated for a current level of 1.03 amps/pole 
and fully overlapped condition indicating magnetic saturation 
for the pole material. 

6 Experimental Verification of tlie Torque Model 
The verification of the torque model is carried out on the 

experimental testbed with all the eleven coils assembled. Both 
the forward and inverse solutions of the torque model are em
ployed. The torque model requires that the matrices (A„ L = 
1, 2, 3) be computed as a function of the permeance model. 
The permeance model used in this experiment is expressed in 
the form of Fourier series expansion, Eq. (7) , in order to fully 
comply with the requirements for a permeance function for a 
spherical motor. The coefficients of the permeance function are 
given in Table 2. 

I 

" Analytical model 
0.76 amps/pole 

Experlmemal 
0.76 amps/pole 

Analytical model 
1.34amps^le 

Experimental 
1.54 amps/pole 

Displacement (Radians) 

Fig. 14 Experimental and analytical model comparison 
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Table 2 Coefflcients of permeance model (Fourier series 
expansion) 

MtuuKd torqiM (Nm) 

Po = 0.9284 
p , = 0.0244 
P6 = -0.0031 
p , = 0.0014 
Pn = -0.0008 
Pi5 = 0.0005 
Pa = -0.0004 

PI = 0.5369 
P4 = -0.0024 
p^ = 0.0024 
Pio = -0.0012 
Pi3 = 0.0007 
p,6 = -0.0005 
Pi, = 0.0003 

Pi = 0.0478 
Pi = 0.0049 
Ps = -0.0008 
p„ = 0.0010 
Pi4 = -0.0006 
Pi7 = 0.0004 
P20 = -0.0003 

The optimal input mmf's for a specified torque at a given 
orientation are computed as follows: First, an initial input 
mmf's vector is estimated. Next, a local optimal solution is 
computed by off-the-shelf GRG optimization algorithm (Wolfe, 
1968). In the following examples, the cost function represented 
by Eq. (23) is chosen such that the consumed electric power 
is minimized (p = 2) , and by choosing M = 10^, the constraint 
equations are satisfied with the relative accuracy of 10"' . Fi
nally, the global optimal solution is obtained by comparing the 
objective values of local optimal solutions. 

Forty-four sets of initial values were used in each of the input 
vector computations. These initial values are: (0, . . . , 0, M, = 
1, 0, . . . , 0 ) , ( 1 , . . . , 1, M, = 0 , 1 , . . . , 1 ) , (0 , . . . , 0 , M, = 
- 1 , 0 0) , and ( - 1 , . . . , - 1 , «,- = 0, - 1 , . . . , - 1 ) 
where / = 1,. . . , 11. Experiments have been performed at three 
particular orientations; namely, (0, 0, 0) deg, (0, 18, 0) deg, 
and (0, 18, 18) deg. The comparison between the torque speci
fied and the measured torque about the z-axis at the three differ
ent orientations is shown in Fig. 15. Table 3 shows the maxi
mum input current among the eleven coils for a specified torque 
(in Nm) about the z-axis for the three different orientations. 
Figure 16 shows a comparison between the specified torques 
( T ; , 0, 0) , (0, Tj,, 0) , and (0, 0, T;) and the measured torques 
at the orientation (0, 0, 0) deg. 

The results, in general, show good agreement with the analyti
cal model. The deviations between the analytical model and the 
experimentally measured torques are primarily accounted for 
by the following factors: (1) The coordinate frame of the F/T 
sensor was at a distance from that of the rotor. The uncertainty 
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Fig. 15 Measured and analytical torques about z-axis 

Fig. 16 Measured torque about x-, y-, and z-axes 

in the torque measurement in the x- and y-components is larger 
than that in the z-direction. The results shown in Fig. 15 are 
consistent with this argument. (2) Frictional forces were ne
glected in the torque measurement. (3) The magnetic model 
was assumed to be linear. 

Unlike the first and second factors which were contributed 
by the measurement method, the third factor has been intro
duced by the assumption of the linearized lumped-parameter 
magnetic model. As discussed in Section 5.2, iron losses be
come significant as the current inputs exceed a certain limit. 
The nonlinear effect at (0, 0, 0) deg orientation can be further 
illustrated in Fig. 17, which states that the torque constant is 
independent of the excitation up to approximately 1 Ampere, 
and monotonically decreases beyond that. The results show a 
sign of magnetic saturation for input greater than 1 ampere. 
Table 3 tabulates the maximum input current for a specified 
torque about the z-axis. For each of the specified torques, the 
input currents were computed to minimize the cost function and 
the maximum current among the eleven inputs used to generate 
the specified torque was noted. Table 3 shows that the maximum 
input currents required at the orientation (0, 18, 0) deg and (0, 
18, 18) deg are larger than that at (0, 0, 0) deg, consequently, 
resulting a larger derivation between the measured data and the 
analytical model. Thus, it is believed that the deviation is a 
result of magnetic saturation. 

The range of the electrical input for a linear magnetic circuit 
can be estimated analytically by computing the flux density at 
the minimum cross-sectional area through which the magnetic 
fluxes flow. The range was determined analytically by consider
ing the magnetic circuit formed by only poles No. 1 and No. 6 
at the orientation (0, 0, 0) deg, which have a minimum cross-
sectional area to the magnetic fluxes at the ferromagnetic core 
of the stator pole. The maximum flux density is computed by 
using a linearized magnetic circuit model; the result is shown 
in Fig. 18, which has been plotted as a function of input current. 
Note that the linearized model is valid up to the flux density of 
2.1 Wb/m^ which corresponds to the maximum flux density of 
1018 carbon steel. Beyond the maximum flux density of the 
material, it is expected that magnetic saturation would occur in 

Table 3 Maximum input current (in amperes) 

r, (Nm) (0°, 0°, 0°) (0°, 18", 0") (0°, 18°, 18") 

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.1 

0.4042 
0.5691 
0.6971 
0.8049 
0.8999 
0.9858 
1.0648 
1.1383 
1.2073 
1.2726 

0.4613 
0.6524 
0.7991 
0.9227 
1.0316 
1.13 
1.2206 
1.3048 
1.384 
1.4589 

0.4327 
0.6119 
0.7494 
0.8653 
0.9675 
1.0598 
1.1447 
1.2238 
1.298 
1.3682 

Input currtnt (A) 

Fig. 17 Torque constants as a function of current 
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Fig. 18 Flux density as a function of input current 

one or more ferromagnetic cores of the stator poles. This result 
was computed by using the linearized magnetic circuit at the 
core of the stator pole; it well agrees with the experimental 
data. 

7 Conclusions 
The dynamic model and the control strategy of a three DOF 

VR spherical motor have been given in this paper. The dynamic 
model of the VR spherical motor consists of the rotor dynamics 
and the torque model. 

The torque model has been derived as a function of the elec
tromagnetic coil excitations and a permeance model as a func
tion of the relative position between the rotor and the stator 
poles. For a current controlled spherical motor, it has been 
shown that the relationship between the output torque and the 
input currents are algebraic and quadratic. The torque model of 
a current controlled VR spherical motor can be separated from 
the dynamic equations of the system, and therefore allows the 
determination of the optimal electrical inputs to be separated 
from the motion control of the spherical rotor. 

Both the forward and inverse torque models have been pre
sented. While the forward torque model is required for the 
dynamic analysis, the solution to the inverse problem of the 
torque model is essential to real-time implementation of the VR 
spherical motor control. Unlike a conventional three DOF joint 
actuator which typically has a unique solution to both the for
ward and inverse dynamics, the inverse problem of the torque 
model for a VR spherical motor is characterized by its infinite 
solutions due to the nature of the distributed actuation. This 
unique characteristic increases the flexibility of the control strat
egy and allows an optimal selection of the control vectors. 

A prototype VR spherical motor has been designed and con
structed, which has served as a testbed for control law develop
ment and implementation. A technique to derive the permeance 
model experimentally has been demonstrated. A specific experi

mental permeance model for the prototype spherical motor has 
been obtained and the torque model has been experimentally 
verified. The results showed good agreement with the analytical 
model. 
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